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AN AUTOMATED PROCEDURE FOR MATERIAL PARAMETER EVALUATION
FOR VISCOPLASTIC CONSTITUTIVE MODELS
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An automated procedure 1is presented for evaluating the material
parameters in Walker's exponential viscoplastic constitutive model for metals
at elevated temperature. Both physical and numerical approximations are
utilized to compute the constants for Inconel 718 at 1100°F. When
intermediate results are carefully scrutinized and engineering judgement
applied, parameters may be computed which yield stress output histories that
are in agreement with experimental results. A qualitative assessment of the

g-plot method for predicting the 1limiting value of stress 1is also
presented. The procedure may also be used as a basis to develop evaluation

schemes for other viscoplastic constitutive theories of this type.
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INTRODUCTION

A large number of unified viscoplastic theories are currently being
developed for metals|[l]. These models generally. require the evaluation of
numerous material parameters before they can be utilized. These constants are
highly coupled to one another, and, due to the nonlinearity and stiffness of
the governing equations, they are difficult to evaluate. The evaluation of
these parameters 1is normally accomplished in a heuristic way due to the
complexity of the models, so that the values of the constants are dependent on
the person evaluating them. The purpose of this research was to develop an
automated procedure for the evaluation of material parameters utilized in
Walker's exponential viscoplastic constitutive model for metals at elevated
temperature{2,3]. The procedure developed herein entails a synthesis 'of
physical and numerical approximations which use various combinations of
experimental data, as well as engineering intuition to determine the
constants. The 1impetus for this work was two-fold. First, automated
procedures for determining the material parameters are needed if standardized
material parameters are ever to be realized. Second, in order to improve the
present theories, a thorough understanding of the approximations and/or
assumptions made during their development and subsequent usage is required.

While the model developed by Walker is only one of many currently being
used, similarities are notable in a number of other theories such as those
proposed by Krieg, Swearengen, and Rhode[4], Bodner[3], and Schmidt and
Miller[5]. Therefore, it is believed by these authors that the general
procedure presented herein may be applied to other models such as those

ment ioned above.
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THE MODEL
The model proposed by Walker is a viscoplastic theory which uses a flow
law for the inelastic strain rate, which is an exponential in stress. The
growth law modeling back stress is of the hafdening/recovery form and accounts
for both dynamic and static thermal recovery. The drag stress term models
isotropic hardening, thus accounting for the cyclic hardening or softening
characteristics of metals. The uniaxial differential form of Walker's

exponential model may be written as:

1 e -1

e = 2 sgn(o - B) , | (1)
B = nQéI - Btln, + n, exp(-nsllog(—g—)ll R+ ngl, (2)
D =D, - D, exp(-n,R) , Ro (3)
: y

R =le |, (4)

where o is the applied stress, eI is the inelastic strain, B 1is the back
stress, and D is the drag stress. A superposed dot above the variables
denotes differentiation with respect to time. The material parameters for
this model are 8, n,, n;, n,, n, n,, n,, 0, and D, . Therefore, nine
constants need to be evaluated, in addition to Young's Modulus E and the
strain aging parameter R, . These same constants are required for the
multiaxial formulation, in addition to Poisson's ratio.

The experiments required to determine the constants for Walker's model
using the procedure developed herein include: 1) A series of constant strain
rate steady state hysteresis lcops under fully reversed strain controlled
conditions (Fig. 1); 2) cyclic hold tests performed on the unloading branch of

the cyclic tests (Fig.2); and 3) long term monotonic tension tests (Fig. 3).
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The cyclic hold tests are used to measure the back stress and are performed by
cycling a material until saturated conditions are reached. Hold times are
then inserted at various points in the unioading region as shown in Fig. 2.
If the test frame is in load control, then the back stress is equal to the
applied stress when no creep is observed for a given ho]d time.

The monotonic tension and cyclic hold tests are used to evaluate the
material parameters found in the inelastic strain rate equation and the back
stress growth law, whereas the cyciic hysteresis tests are used primarily to
obtain constants for the isotropic hardening variable. The monotonic tests
may not be necessary if acceptable values of the limiting stress (°]im) can be
obtained from the first half cycle of the cyclic tests. The aforementioned
experiments were performed on Inconel 718 at 1100° F. A complete description

of the test procedures and results may be found in reference [6].

DETERMINATION OF THE CONSTANTS

The procedure for determining the material parameters in Walker's theory
is described in the ensuing paragraphs. The equations, which are a result of
both physical and numerical approximations, can be coalesced into a single
interactive computer code. Since approximations are made, from time to time
the user may have to judiciously select some constants in order to complete
the constant calculation process. The reason for this can be an insufficient
data base, poor experimental results, or a material response that the model
cannot handle.

Evaluation of the material parameters begins by plotting oqim VErsus
In (EI) . A nonlinear representation signifies that strain aging and/or
thermal recovery effects are present and thus need to be modeled. If 1im is

not obtained experimentally, it can be estimated in a manner similar to that
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proposed by Lindholm, et al.[2].

If %1im is to be estimated, then under conditions of uniaxial tension
loading, when éI is assumed to be a constant and equal to the applied strain
rate and exp( °BB ) > 1 ,eq. (1) may be written as:

o=01n (gl) +B . (5)

Using the evolution equation defining the back stress (eq. (2)) and the
assumption that D remains constant during monotonic loading,

then do/deI (or o) may be written as:

o =n, - gln, + nexp(-n, [1og ()] + nyrel] . (6)

R,

Thus, equations (5) and (6) can be combined, yielding

-No + [n, + NDIn(a: )] , (7)

[0}
[}

where

N =n, +n, exp(-n|log(—=)[) + n,/il . (8)
R

0

Therefore, equation (7) indicates that a plot of o versus o should be linear
at low inelastic strains, having a slope of N and an x-intercept of °1im
The 6- plot is obtained by plotting stress versus inelastic strain (as shown

th order polynomial. This

in Fig. 4(a)) to find o(el), which in general is a n
function is then numerically differentiated and plotted versus stress to

produce the o- plot (see Fig. 4(b)). Hence, values of N and oy 4p Can be
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obtained for each monotonic tension test using a linear regression scheme. If
acceptable values of o14m 8re obtained experimentally, the e- plot may still
be used to determine N. In this situation, the 1inear fit results in a slope
which is forced to pass through °1im *
The constant n, is computed by determining where the effect of strain
aging is considered negligible and may be written as:
R,
n, = -[1n(x)/|log (—)|1 . 9)
R

0

The constants éo and él represent the strain rate at which the strain aging
correction is a maximum and minimum, respectively, and t denotes the residual
correction at rate él . It should be noted that t also affects the rate of
decay of the strain aging correction and selection of too small a value will
result in a very localized correction.

The next step in this procedure is to compute the dynamic and static
thermal recovery constants n,, n_, and ng using equation (8). Assuming that a
1imiting value of stress has been obtained, then é=éI and eq. (8) can be
written a number of times, corresponding to the different monotonic tests

(denoted by the subscript i) as:

-1
Ni =n, + ani + nﬁ/ei . (10)
where
Ry
f'i = exP(‘nsllog (—‘—)l) . (11)
R

0

Thus, the three parameters n,, n , and n, may be obtained simultaneously
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using a multiple linear regression scheme. A plot of this curve fit will
indicate if acceptable values of the dynamic and thermal recovery parameters
have been found. In the event that poor results are obtained (as shown in
Fig.5) , one of the following actions can be taken: 1) The data base can be
scrutinized more carefully, using additional tests to capture the desired
effect or deleting tests that do not appear consistent; 2) values of
n,, n,,and n, can be assigned using engineering intuition; or 3) an
uncoupled method (to be discussed below) for evaluating the constants can be

used.
The uncoupled formulation assumes that thermal recovery effects can be

neglected for high strain rate tests. Thus, eq. (10) may be written as:
N.=n+n f. . (12)

Therefore, n, and n, can be computed by a linear least squares algorithm
where n, 1is the intercept and n, is the slope (see Fig. 5). If this
method is wused, the constant n, should be initially set to zero and
determined later in the procedure.
The hardening coefficient n, is computed on the basis that B saturates to
B]im at large inelastic strains. Hence, é=0 and equation (2) reduces to
n2

B,. = - . (13)
Him n, + nf + n6/cI

If it dis assumed that the ratio °exp/Bexp will remain constant for the

limiting condition at sufficiently large inelastic strains, then

[o] s
e ol (14)
exp 1im

323



Substituting eq. (13) into (14) and solving for n, results in

-1
(n. + nf +n./¢ log, B
n, = 3 b 6 lim  “exp , (15)
%exp %exp

where o1 im values are obtained from long term monotonic tension tests

or o-plots and B__ / values come from cyclic hold tests. The final value

exp’ exp
of the hardening coefficient is then computed as the arithmetic mean of the
number of experiments. If an acceptable value of n, is not obtained, it can
be specified, noting that this parameter effects the rate of hardening.
The initial value of drag stress D, and the inelastic strain rate
scalar g are determined by rewriting equation (15) using the limiting values
of o and B as:

- Byin = Do1n(él) + D, In(s) . (16)

MVim ]

Since By;, 1s given by equation (13), it can be substituted into equation

(16), resulting in

n,

-1
8§ p = Oqs - — = D,In(e”) + D, 1n(8) . (17)
9B = CVim T Tt e nsil 0

Equation (17) indicates that a plot of 6 g Versus 1n(él) should be linear
(the piecewise curve shown in Ffig. 6 is an artifact of the strain aging
correction in the dynamic recovery term of the back stress evolution
equation), having a slope of D, and an intercept of D In(8) which are obtained

from a linear regression analysis. Hence, g8 can be computed directly once the
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value of the intercept is known.

If thermal recovery effects were previously neglected, the
constant n. can now be evaluated. Since B8 and 0,, n,, n,, and n, are known,
eq. (13) can be substituted into eq. (16) yielding an expression for n. :

B -, In(eeH)l - n, - nfy (18)

n, = 4

6 {n, o

1im
The thermal recovery parameter is then computed for a number of low strain
rate monotonic tension tests and averaged.

Up to this point, the only tests that are needed in order to compute the
material parameters are monotonic tension and cyclic hold tests. To obtain
the isotropic hardening and recovery constants D0,, 0,, and n,, saturated
cyclic hysteresis data are required. By estimating the cumulative inelastic
strain from applied stress, strain amplitude, and E, in addition to assuming

that D saturates to D, , then n, can be approximated by:

n, = -1n(T)/Rdvg . (19)

where Rav is the average of R for a number of tests and + is a number

g
approaching zero.

On the physical basis that B saturates much more rapidly than D, equation

(5) can be written as:

Oqys. - B,
_ _lim 1im
DHm =0, = (20)

ln(BéI)

where
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B]im =n,/N . (21)
The values of oyip and N in equations (20) and (21) are estimated from
the o-plot using data from the tension half-cycle after cyclic saturation has
occurred. If several tests are used, D, is computed as the arithmetic mean.
The final parameter to be determined is D, . When R=0 equation (3)

reduces to
p - Dy (22)

from which D, may be computed directly, completing the constant calculation
procedure.

The primary equations used in the procedure described above are
summerized below and a flow chart of the associated computer code is shown in
Fig. 7. The program is written to compute the constants in a totally
automated fashion or, alternately, the parameters can be modified and/or
recomputed through user intervention. While the flow chart depicts the
procedure as a sequential series of evaluations, the user may alter the
program flow to iterate on a specific constant or series of constants.

1) Values of 9,;y @nd N from monotonic tension tests
are computed using equation (7) and a least
squares procedure.

2) After selecting R,, R, and v, n, is evaluated

0’
using equation (9).

3) The parameters n,, n , and n, are determined, in a
coupled formulation, by equations. (10) and (11)

using a multiple linear regression scheme, or
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alternately, using an uncoupled formulation by
equations (12) and (18).

4) The back stress hardening coefficient n, is
computed directly from equation (15).

5) The constants D, and g are  evaluated using
equation (17) via a least squares procedure.

6) After computing the cumulative inelastic strain
from the experimental data, n, is evaluated
directly from equation (19).

7) D, and D, are computed using equation (20) and

(22).

DISCUSSION OF THE PROCEDURE AND RESULTS

The parameter evaluation program, described in the previous section, does
not require an entire experimental data base. Instead, summary information
which is composed of both measured quantities and pre-processed values is all
that is necessary. Data tabulated from fully reversed cyclic tests, cyclic
hold tests and long term monotonic tension tests on Inconel 718 at 1100° f may
be found in Table 1. These data were used to compute an initial set of
constants (see Table 2) in a totally automated fashion. Comparisons between
Walker's exponential model and several tension experiments may be seen in
Fig.'s 8-10. It is apparent that the initial set of parameters did not enable
the model to capture the true response of the material. Therefore, a critical
review of both the procedure and experimental data was necessary.

For the purpose of this discussion, it was assumed that the data base

accurately represented the material behavior. Therefore, steps in the
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procedure which require user interpretation were examined first and the
following observations were made.

When constructing the e-plot, there are several points to consider.
First, proper evaluation of °1im and N require that eI be computed
after él becomes constant. This is generally assumed to occur at the 0.2%
offset yield stress. However, if this is not true, the computed value of N
will be too large, which in turn will yield a value of °yim that is too low.
A second area of interest is in the differentiation of the o versus

eI curve. Usually the stress is expressed as an nth order polynomial
function of the inelastic strain. However, depending upon the viscoplastic
model and material system, a logarithmic, power law or exponential curve fit
may be more suitable. In addition, a finite difference approximation can be
used, thus eliminating the curve fitting requirement altogether. Since a poor
curve fit will yield a s-plot that is difficult to interpret, care should be
taken in selecting the proper form of the equation. Lastly, one needs to
consider the strain amplitude necessary to obtain an accurate prediction of
Nim *

The e-plots for the material system considered herein were constructed
using a combination of third and fourth order polynominal curve fits (see Fig.
4). Figure 11 shows that the values of N are scattered and have no specific
trends when they are plotted against in(¢). In a similar fashion, Fig. 12
shows anomalies in the prediction of 1 im While the sigmoidal shape of the
curve was expected, the large discrepancies make interpretation difficult.

To illustrate how scatter such as that depicted in Fig.'s 11 and 12 can
occur, consider the following points. First, Fig. 13 shows a e-plot

constructed using a fourth order polynomial curve fit, evaluating o(el) over

various strain amplitudes. While there 1is only a 6% change in
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predicted Nim® there is over a 50% change in N. Some of the discrepancy can
be attributed to the fact that él was not constant. In addition, the order of
the curve fit drastically changed the shape of the e-plot making
interpretation difficuit . Second, Fig. 14 shows a e-plot generated from a

logarithmic curve fit. While not shown, evaluation of o and N. over

Tim
different strain amplitudes did not adversely affect their values. Finally,
Fig. 15 depicts a e-plot constructed using finite differences. It is apparent
that numerical differentiation by this method yields unacceptable results. In
summary, one must carefully consider both the constitutive model and material
system before selecting the type of curve fit that will be used in the
construction of the e-plot.

It was also determined that the mulitiple linear regression scheme used to
compute dynamic and static thermal recovery constants in a coupled fashion did
not work well when the material exhibited substantial strain aging. Therefore,
by neglecting thermal recovery, n3 and n, were computed using an uncoupled
procedure. Figures 8 through 10 show that Walker's model, using the final
parameters (see Table 2), was able to reproduce the input data fairly well
except in the initial yield region. Test 80 showed the largest deviation
between actual and predicted stress, underestimating it by 6% at a strain
amplitude of 0.8%.

Figures 16 through 18 show the model behavior for the last cycle of
several cyclic hysteresis tests. Figures 17 and 18 indicate that the computed
value of D, was too large, which resulted in an excess of material softening
under cyclic loading. However, the opposite trend can be seen in Fig. 16
(test 86 was the fastest cyclic test run), wherein the peak stress amplitude
was overpredicted. A review of the monotonic tension data reveals the same

tendency. This would lead to the conclusion that the full effect of the
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strain aging correction was not captured.

A complex history test (one which was not used to evaluate the constants)
was used to show the predictive capabilities of Walker's model using the final
set of parameters. In general, fig. 19 indicates the numerical simulation
matches the test fairly well. The only major problem encountered was a 7.5%

overprediction in stress at large strain amplitudes.

CONCLUSIONS
A method for obtaining the material parameters for Walker's model has
been developed which is a synthesis of both physical and numerical
approximations. The associated computer algorithm allows the user to specify
either a totally automated procedure or engineering intuition at selected
points when computing constants. In addition, qualitative assessments were

made regarding the use of the e-plot in determining o and N. It was noted

that the method of differentiating the o versus eI curve depends on both the

lim

constitutive model being used and the material system.

Walker's viscoplastic constitutive model for metals at elevated
temperature was compared to experiment results for Inconel 718 at 1100°F.
This material system responds with apparent strain aging, undergoes cyclic
work softening, and is susceptible to low cycle fatigue. It was shown that
Walker's model was able to capture the response of the material. It has also
been shown that the use of the linearized equations can lead to unacceptable
simulations if care is not used to interpret the results. The procedure
yie]ds initial values for the constants which may then be used in an iterative

scheme to arrive at the final parameters.
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Figure 1. Cyclic Hysteresis Test
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Figure 2.

Cyclic Hysteresis Test with Hold Times
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Figure 3. Long Term Monotonic Tension Test
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O(EI) Polynomial function dotain via a least squares
curve fit I
£

Figure 4(a). Stress versus inelastic strain

\

Figure 4(b). Typical O-plot
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computed Ny

1 1 'l 1 s i

1n(€)
® values of N obtained from the O-plots

n3, n,, and n. obtained simultaneously
using a multiple linear regression scheme

- o -

ng and n, computed using a linear
regression scheme

Figure 5. Least squares fit of N as a function
¢I (note: the abscissa is shown as

In(¢) instead of € for pictorial
purposes only)
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1 1 - 1 1

1n(€)

Data to be fit

--~- Result of linear regression analysis

Figure 6. Least squares fit of Jgp as a function
ln(él)
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Figure 7. Flowchart of Walker's Procedure
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E 1S
ORIGINAL P{?ﬁﬁm
g)!& ]1()()]&. Cl
Test No.
? £ ¢ °-xp °un cy “up N k
1| 70 | 3.1six10” 132.527 | 97.83 287,253
2 86 | 1.002x107" 120.938 | 91.677 307.181
3 56 | 9.966x10"" 118.217 | 95.575 305,436
o a 35 | 9.235m107" 136.3 2.2
] s 37 6.948<107" 132,58 246.9
6 65 3.127x107" 134.143 | 97.84 268.17
7 39 1.793x107° 130.6 206.61
8 83 | 9.9260107° 134.536 | 94.56 337,399
| 9 34 | 7.637x107° 182.1 119.8
| 10 36 | 5.703x10°° 138.5 241.6
1 g0 | 3.054x10”" 141.821 | 100.941 310,777
o 12 az | 1.91ax10”’ 137.6 291.8
| 13 38 | 1.410x107° 140.7 212.4
14 72 | 7.6260007" 138.155 | 101.71 358.549
15 7n | 7.25m10°° 135.584 | 97.67 342,254
«| 16 a0 | 7.029x10"" 138.3 328.5
17 84 | 2.612x107 | 116.48 | 13z.527 68.3
18 88 | 9.272x10"" | 100.98 | 120.938 62.47
19 g8 | g9.z7ax10™" | 100.98 | 18.217 62.47
20 Bl | s8.635x10"" | 116.45 | 120.938 64.65
21 81 | B.635x107" | 116.45 | 118.217 64.65
22 &5 2.75!:10-“ 107.84 134,143 80.00
23 86 | 1.002x107° 108.326 288.42 0.0773
24 56 | 9.966x107 105.897 294.58 0.0799
25 65 3.12710”" 121.427 248.02 0.0707
26 83 | 9.926x10"° 136.693 267.179 | 0.0293
27 80 3.05'5)«]0's 135.899 255.534 0.0578
28 72 7.262x10°° 135.38 75,035 | 0.0205

®» Dif ferent Material Svstem

Table 1. Input Data for Parameter Evaluation
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Initial Final

Parameters Values Values

B (sec) 0.288E34 0.280E70
Dy (ksi) 0.580£00 0.520E00
Dy (ksi) -0.000E00 -0.120E00
éé in/in/sec 0.454E-4 0.454E-4
E (ksi) 0.247E05 0.247t05
no (ksi) 0.264E05 0.140E05
n3 0.370E03 0.390E03
ng -0.200E03 -0.200E03
ng 0.530E00 0.103E01
ng (/sec) 0.400E-4 0.400D-4
ny (/sec) 0.179E02 0.179E02

Table 2. Parameters for Walker's model
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Stress (KSI)

TEST 70 -- STRAIN RATE = 3.1E51€-3/5EC
---------- WRLKER MODEL (FIMAL PRRAMETERS)
- - -~ WALKER MODEL (IN!TIAL PARAMETERS)

150.0 T 1 T 1 T T T T ! I Y T !
125.Cp= -
100.0 p= -
P -
- -
75.0p=
. m
50.0 F— -
= -
25-0 fu— —
0.0 ’ t | 1 | | ] 1 | | ] 1 ] 1
0.0 .002 .004 .006 .008 .010 012 .14

Strain (in/in)
Figure 8. Comparison of Walker's model with initial and
final parameters to Test 70-a long term
monotonic tension test.
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Stress (KSI)

TEST 80 -- STRAIN RRTE = 3.054F-5/SEC
---------- WALKER MODEL (FINAL FARRMETERS)
- == - WALKER MDODEL [INITIAL PARAMETERS)

150.0 T | T T T ) T I T | T T

100.0

75.0

50.0

25.0

0.0 .002 .004 .006 .008 .010 .012
Strain (in/in)
Figure 9. Comparison of Walker's model with initial

and final parameters to Test 80-a short
term monotonic tension test.
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Stress (KSI)

TEST 71 -- STRAIN RATE = 7.253E-8/SEC

---------- WALKER MODEL {FINAL PARARMETERS!
- - - - WALKER MODEL (INITIAL PARAMETERS)

150.0 =1t

1 ! L] ! i ! 1 ! 1 ! 1
- -
125.0 -
100.0 p= -
75.0 -
50.0 -
25.0 -
o -

,’/
0.0 ! | i | { ] 1 | 1 | 1 ]
0.0 .002 .004 .006 .008 .010 012 .014
Strain (in/in)
Figure 10. Comparison of Walker's model with initial

and final parameters to Test 71-a long
term monotonic tension test.
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Figure 13. O-plot using a 4th order polynomial fit, evaluating
o(el) over different strain amplitudes
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Figure 15. O-plot constructed by finite difference

348



TEST 86 ICYCLE 10) -- STRAIN RATE = 1.002E-~3/SEC

---------- WRLKER MODEL {FINRL PRRAMETERS)
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50.0 p=
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LI | | | I 1 1
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Figure 16.

Strain (in/in)

Comparison of Walker's model to the last
cycle of Test 86.
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TEST 80 (CYCLE 103 -- STRAIN RRTE = 3.054E-5/SEC
---------- WALKER MODEL (FINAL PARAMETERS)
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Figure 17. Comparison of Walker's model to the last
cycle of Test 80.
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TEST 72 (CYCLE 4) -- STRRIN RATE = 7.62BE-6/SEC
WALKER MODEL (FINAL PARAMETERS!
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Figure 18. Comparison of Walker's model to the last

cycle of Test 72.
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TEST B9 ~-- COMPLEX INPUT HISTORY

---------- WRLKER MODEL (FINAL PARAMETERS)
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Figure 19. Comparison of Waller's model to a

complex history test.
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